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NIZK NIWI Bilinear SXDH / DLIN

Definition

A NIZK proof is a non-interactive protocol letting one party proving
to another that a statement is true, without revealing anything
other than the veracity of the statement.

Alice possesses a secret s € L with a witness 6.

44, 1 know a secret x € £

ere is the proof IM(6)

Bob is now convinced Alice possesses a secret x € L.



NIZK NIWI Bilinear SXDH / DLIN

Definition
A NIWI proof is a non-interactive protocol where the verifier can't
distinguish two instances of different secrets.

Alice possesses secret a secret s € £ with a witness
0s € T ={61,...,0,}. Bob knows T.

dA, T know a secret x € £

Here is the proof Il

Bob can't decide which secret is known by Alice, despite his
knowledge of T.
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Intro

Bilinear Groups

G1, Gy, G finite cyclic groups of order p
g1 generates Gy1, g» generates Go

e: Gy x Gy - Gt

e(g1,42) generates G

e(gf. 87) = e(g1,8)*



Intro

SXDH/ DLIN assumptions

SXDH / DLIN

SXDH

Given (p7 le G27 GT7 €, g17g2)'

(u, v, u¥,u?) and (u, u*, u’, u*”) are computationally
indistinguishable.(DDH is hard in both group)

DLIN

Given (p,G,Gr,e,g),

(u,v,w,u? v2, w) and (u, v, w, u?, v®, w?P) are computationally
indistinguishable.
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@ Groth Sahai Proof System
@ Notation
@ Types of Equations
@ Proof elements

pes of Equations

Proof elements
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Notation T:

3 bezpand A BeG

G, B) =" ai-b (3B =11, B" (AB):=T1[",e(AiBi)

(SXDH) o: G x G5*¢ — Ghxk

cod = ([0, e(cei, dej))1<ij<k

N,

S n n
(DLIN) o: G"™*3 x G"<3 — G3*3

Ei d:= (ngl e(c&,-, dg7j)1/2e(Cg’j, d&i)l/z)lgi,jgjg

A
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Notation Types of Equations Proof elements

Pairing-product equation:
(A V) - (X,B) - (X,TY) = t7
Multi-scalar multiplication equation (in Gy):
(%,B)-(@,V) - (x.TY) =T

Quadratic equation in Zy
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Proof elements
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Small Exp For a few pairir Our Result

© Batching Technique
@ Small Exponents Test
@ For a few pairings less
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Batch Small Exp For a fey

Small Exponents Test BGR EC'98

16y e(fir, hig)Se = A

H, =1 (ﬁn;hln)'":An



Batch Small Exp For a fey

Small Exponents Test BGR EC'98

T16, e(fir, hin)5r = A

H, 1 (f;nahln)'"_An

@ Pick small random exponents d1,...,d,

o Check H H, pe(fij, hij)i% = Hjm:1ASJ



S Batch pp t o Small Exp Fo

Small Exponents Test BGR EC'98

[16y e(fir, hig)Se = A

H, =1 (ﬁn;hln) ion _An
@ Pick small random exponents d1,...,d,

o Check [T 1H: iy hij)ii% = 1% AJ(?j

Theorem (Ferrara, Green, Hohenberger and Pedersen, CT-RSA 09)

Given m pairing-based verification equations, the verifier with

random exponents 01, ...,0m of £ bits accepts an invalid batch
with probability at most 2~ .
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Small Exp For a few pairings less ~ Our Result

© Move the exponent into the pairing:
e(fi, i) — e(£, hy)




Small Exp For a few pairings less ~ Our Result

© Move the exponent into the pairing:
e(f;, bi)% — e(£ hy)
@ Move the product into the pairing:
5 5
[17 (6 h) = e (T4 £7 i)
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Small Exp For a few pairings less ~ Our Result

© Move the exponent into the pairing:
e(fi, hi)" — e(£", hi)
@ Move the product into the pairing:
5 5
[17e(f”, hi) — e (TI 67, by)
© Switch two products:

[Tse (TI7L 7 b)) o TI7 e (6. TT k)
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[T e(dia. TT 4,75
i=1

He(d;,zvnd:iik)
e(di, T d ¢

He(.A;,di,1)

e(dis, TTd*)
(i1, [T d,%

Small Exp For a few pairings less Our Result

He(d,-,l,ndl‘;)
e(di2, [Tde*)

H e(di2, I] d:,iz’k)z
i-1

H e( A, di2)

e(dis, TT1d55)
e(di2, [T )

n

[T e(Ai dia)e(dia, TTde5)
i=1
e(dis, [1d,5)

n

H e(Ai, dip)e(di2, ] d:iék)
o1
(dl 3, H d’Y' k)

ﬁ e(A;, di3)°

i=1
e(dis, TTd )




n r13+r3a "/, k21 i k(ri2tr21) v p(r13+r31)
[T e(dhh A; II d dk 2 dk,a ) )

i

ra,3+r32 Vik(ri2tr21) v k222 v k(r2,34r3,2)
e(d;z7 A; Hd ! dk'2 dkfs ) .

2 3 ’Y, k(ris+raa) v k(r2,34r3.2) 75 k2133
e(d, 3, ,- H d dk,z dk,3 )



Small Exp For a few pairing Our Result

Naive ‘ Batch
SXDH
Pairing-product | 5m+ 3n+ 16 m+2n-+38
Multi-scalar in Gy | 8m+2n+14 | min(2n+9,2m+n+17)
Multi-scalar in G, | 8n+2m+ 14 | min(2m+9,2n+ m+7)
Quadratic 8m+8n+12 2min(m, n) + 8
DLIN
Pairing-product 12n 427 3n+6
Multi-scalar 9n+ 12m + 27 3n+3m+6
Quadratic 18n + 24 3n+6
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O Applications
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Applications Groth Group Signature BCKL P-Signature

o pk=(f,h, T) € G? x Gt (msk:z € G such that e(f,z) = T)
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Applications Groth Group Signature BCKL P-Signature

o pk=(f,h, T) € G? x Gt (msk:z € G such that e(f,z) = T)
e C; = (a, b) satisfying e(a, vh) e(f,b) = T, where
pk; = v =g% € G,skj = x;
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W Applications c Groth Group Signature BCKL P-Signature

o pk=(f,h, T) € G? x Gt (msk:z € G such that e(f,z) = T)
e C; = (a,b) satistying e(a, vh) e(f,b) = T, where
pk; = v =g% € G,skj = x;
o To sign m € Z,, computes o = gt/(5+™); and forms GS
commitments d,, d,, and d,,
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W Applications c Groth Group Signature BCKL P-Signature

o pk=(f,h, T) € G? x Gt (msk:z € G such that e(f,z) = T)
e C; = (a,b) satistying e(a, vh) e(f,b) = T, where
pk; = v =g% € G,skj = x;
o To sign m € Z,, computes o = gt/(5+™); and forms GS
commitments d,, d,, and d,,

o Make a proof that the associated plaintexts satisfy the
following:

e(a,vh)e(f,b)=T and e(o,g"v)=-e(g,8)

/ 22

18 /22



h Applications c o Groth Group Signature BCKL P-Signature

Batched result

| Naive Approach | With Batch
Independant Equation

e(a,vh)e(f,b)=T 13
e(o,gmv) =e(g,8) 20 + 35
Combined
Both 68 11
Several 68n 4n+7




Applications h G e BCKL P-Signature

] f,gGGl,hGGQ
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Applications Groth Group S ature BCKL P-Signature

] f,gGGl,hGGQ
e pk; =v,w e Gy
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ure BCKL P-Signature

Applications Groth Gro

] f,gGGl,hGGQ

e pk; =v,w e Gy

e To sign m € Zp, computes 0 = (G, &, (3) € Gy x Gy x Gy,
such that e(Cy,vh™ () = e(g, h) and e(f, &) = e(C3, w)
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Applications Groth Group Signature BCKL P-Signature

] f,gGGl,hGGQ

e pk; =v,w e Gy

@ Tosign me Zp, computes o = (Cl, G, C3) € G1 x Gy x Gy,
such that e(Cy,vh™ () = e(g, h) and e(f, &) = e(C3, w)

o With the GS commitments cq,co and c3 for G, My = ™, (3
in G; and dy,dy for My, = A™ and G, in Go.



Applications Groth Group Signature BCKL P-Signature

f,g € Gy, h e Gy

pk; = v,w € Gy

To sign m € Zp, computes o = (Cl, G, C3) € G1 x Gy x Gy,
such that e(Cy,vh™ () = e(g, h) and e(f, &) = e(C3, w)
With the GS commitments cy,c and c3 for Gy, My = ™, (3
in G; and dy,dy for My, = A™ and G, in Go.

o Make a proof that they satisfy the following:

e(Cl, VM2C2) = e(g, h), e(f, C2) = e(C3, W)

and e(f, M2) = e(Ml,h)
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h Applications c o Groth Groug ature BCKL P-Signature

Batched result

| Naive Approach | With Batch
SXDH
One signature 68 15
Several 68n 2n+13
DLIN
One Signature 126 12
Several 126n 3n+9




Conclusion

Thank you

Any Questions 7
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