Batch Groth-Sahai

Olivier Blazy Georg Fuchsbauer Malika Izabachène Amandine Jambert Hervé Sibert Damien Vergnaud

ENS - Paris - France

ACNS 2010

Introduction

- Introduction
- Groth Sahai Proof System

- Introduction
- Groth Sahai Proof System
- Batching Technique

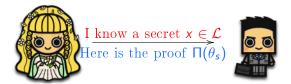
- Introduction
- Groth Sahai Proof System
- Batching Technique
- 4 Applications

- Introduction
 - Non Interactive Zero Knowledge Proof
 - Non Interactive Witness Indistinguishable Proof
 - Bilinear Groups
 - Standard Assumptions
- 2 Groth Sahai Proof System
- Batching Technique
- 4 Applications

Definition

A NIZK proof is a non-interactive protocol letting one party proving to another that a statement is true, without revealing anything other than the veracity of the statement.

Alice possesses a secret $s \in \mathcal{L}$ with a witness θ_s .



Bob is now convinced Alice possesses a secret $x \in \mathcal{L}$.

Definition

A NIWI proof is a non-interactive protocol where the verifier can't distinguish two instances of different secrets.

Alice possesses secret a secret $s \in \mathcal{L}$ with a witness $\theta_s \in T = \{\theta_1, ..., \theta_n\}$. Bob knows T.



Bob can't decide which secret is known by Alice, despite his knowledge of T.

Bilinear Groups

- $\mathbb{G}_1, \mathbb{G}_2, \mathbb{G}_T$ finite cyclic groups of order p
- ullet g_1 generates \mathbb{G}_1 , g_2 generates \mathbb{G}_2
- $e: \mathbb{G}_1 \times \mathbb{G}_2 \to \mathbb{G}_T$
- ullet $e(g_1,g_2)$ generates $\mathbb{G}_{\mathcal{T}}$
- $e(g_1^a, g_2^b) = e(g_1, g_2)^{ab}$

SXDH/ DLIN assumptions

SXDH

Given
$$(p, \mathbb{G}_1, \mathbb{G}_2, \mathbb{G}_T, e, g_1, g_2)$$
, (u, u^x, u^y, u^z) and $(u, u^x, u^y, u^{x \cdot y})$ are computationally indistinguishable. (DDH is hard in both group)

DLIN

Given
$$(p, \mathbb{G}_T, e, g)$$
, $(u, v, w, u^a, v^b, w^{a+b})$ are computationally indistinguishable.

- Introduction
- Groth Sahai Proof System
 - Notation
 - Types of Equations
 - Proof elements
- Batching Technique
- 4 Applications

$$\langle \vec{a}, \vec{b} \rangle := \sum_{i=1}^n a_i \cdot b_i \quad \langle \vec{a}, \vec{\mathcal{B}} \rangle := \prod_{i=1}^n \mathcal{B}_i^{a_i} \quad \langle \vec{\mathcal{A}}, \vec{\mathcal{B}} \rangle := \prod_{i=1}^n e(\mathcal{A}_i, \mathcal{B}_i)$$

$$(\mathsf{SXDH}) \bullet \colon \mathbb{G}_1^{n \times k} \times \mathbb{G}_2^{n \times k} \to \mathbb{G}_T^{k \times k}$$

$$ec{\mathbf{c}} ullet ec{\mathbf{d}} := (\prod_{\ell=1}^n e(c_{\ell,i}, d_{\ell,j}))_{1 \leq i,j \leq k}$$

$$(\mathsf{DLIN}) \overset{\mathfrak{s}}{\bullet} \colon \mathbb{G}^{n \times 3} \times \mathbb{G}^{n \times 3} \to \mathbb{G}^{3 \times 3}_{T}$$

$$ec{\mathbf{c}} \overset{s}{ullet} ec{\mathbf{d}} := \left(\prod_{\ell=1}^n \mathsf{e}(c_{\ell,i},d_{\ell,j})^{1/2} \mathsf{e}(c_{\ell,j},d_{\ell,i})^{1/2}\right)_{1 \leq i,j \leq 3}$$

Pairing-product equation:

$$\langle \vec{\mathcal{A}}, \vec{\mathcal{Y}} \rangle \cdot \langle \vec{\mathcal{X}}, \vec{\mathcal{B}} \rangle \cdot \langle \vec{\mathcal{X}}, \Gamma \vec{\mathcal{Y}} \rangle = t_{T}$$

Multi-scalar multiplication equation (in \mathbb{G}_1):

$$\langle \vec{x}, \vec{\mathcal{B}} \rangle \cdot \langle \vec{a}, \vec{\mathcal{Y}} \rangle \cdot \langle \vec{x}, \Gamma \vec{\mathcal{Y}} \rangle = T$$

Quadratic equation in \mathbb{Z}_N

$$\langle \vec{a}, \vec{y} \rangle + \langle \vec{x}, \vec{b} \rangle + \langle \vec{x}, \Gamma \vec{y} \rangle = t$$

(DLIN) Pairing Product Equation: $\langle ec{\mathcal{A}}, ec{\mathcal{Y}} angle \cdot \langle ec{\mathcal{Y}}, \Gamma ec{\mathcal{Y}} angle = t_{\mathcal{T}}$

The verification relation of a proof $(\vec{\mathbf{d}}, \phi) \in \mathbb{G}^{n \times 3} \times \mathbb{G}^{3 \times 3}$ is the following:

$$\left[\iota(\vec{\mathcal{A}})\stackrel{\mathfrak{s}}{\bullet}\vec{\mathbf{d}}\right]\odot\left[\vec{\mathbf{d}}\stackrel{\mathfrak{s}}{\bullet}\Gamma\vec{\mathbf{d}}\right]=\iota_{\mathcal{T}}(t_{\mathcal{T}})\odot\left[\vec{\mathbf{u}}\stackrel{\mathfrak{s}}{\bullet}\vec{\phi}\right]$$

- Introduction
- 2 Groth Sahai Proof System
- Batching Technique
 - Small Exponents Test
 - For a few pairings less
 - Complication
 - Our Result
- 4 Applications

Small Exponents Test, BGR EC'98

$$\begin{cases} \prod_{i=1}^{k_1} e(f_{i,1}, h_{i,1})^{c_{i,1}} = A_1 \\ \dots \\ \prod_{i=1}^{k_n} e(f_{i,n}, h_{i,n})^{c_{i,n}} = A_n \end{cases}$$

Small Exponents Test, BGR EC'98

$$\begin{cases} \prod_{i=1}^{k_1} e(f_{i,1}, h_{i,1})^{c_{i,1}} = A_1 \\ \dots \\ \prod_{i=1}^{k_n} e(f_{i,n}, h_{i,n})^{c_{i,n}} = A_n \end{cases}$$

- Pick small random exponents $\delta_1, \ldots, \delta_n$
- ullet Check $\prod_{j=1}^n\prod_{i=1}^{k_j}e(f_{i,j},h_{i,j})^{c_{i,j}\delta_j}=\prod_{i=1}^mA_i^{\delta_j}$

$$\begin{cases} \prod_{i=1}^{k_1} e(f_{i,1}, h_{i,1})^{c_{i,1}} = A_1 \\ \dots \\ \prod_{i=1}^{k_n} e(f_{i,n}, h_{i,n})^{c_{i,n}} = A_n \end{cases}$$

- Pick small random exponents $\delta_1, \ldots, \delta_n$
- ullet Check $\prod_{i=1}^n\prod_{i=1}^{k_j} e(f_{i,j},h_{i,j})^{c_{i,j}\delta_j}=\prod_{i=1}^m A_i^{\delta_j}$

<u> Theorem (Ferrara, Green, Hohenberger and Pedersen, CT-RSA 09)</u>

Given m pairing-based verification equations, the verifier with random exponents $\delta_1, \ldots, \delta_m$ of ℓ bits accepts an invalid batch with probability at most $2^{-\ell}$.

Move the exponent into the pairing:

$$e(f_i,h_i)^{\delta_i} \rightarrow e(f_i^{\delta_i},h_i)$$

- **1** Move the exponent into the pairing: $e(f_i, h_i)^{\delta_i} \rightarrow e(f_i^{\delta_i}, h_i)$
- Move the product into the pairing:

$$\prod_{j=1}^{m} e(f_j^{\delta_j}, h_i) \rightarrow e\left(\prod_{j=1}^{m} f_j^{\delta_j}, h_i\right)$$

- Move the exponent into the pairing: $e(f_i, h_i)^{\delta_i} \rightarrow e(f_i^{\delta_i}, h_i)$
- Move the product into the pairing: $\prod_{i=1}^m e(f_i^{\delta_j}, h_i) \rightarrow e\left(\prod_{i=1}^m f_i^{\delta_j}, h_i\right)$
- Switch two products: $\prod_{i=1}^k e\left(\prod_{j=1}^m f_j^{\delta_{i,j}}, h_i\right) \leftrightarrow \prod_{j=1}^m e\left(f_j, \prod_{i=1}^k h_i^{\delta_{i,j}}\right)$

$$\begin{pmatrix} \prod_{i=1}^{n} e(d_{i,1}, \prod d_{k,1}^{\gamma_{i,k}})^{2} & \prod_{i=1}^{n} e(d_{i,1}, \prod d_{k,2}^{\gamma_{i,k}}) & \prod_{i=1}^{n} e(\mathcal{A}_{i}, d_{i,1}) e(d_{i,1}, \prod d_{k,3}^{\gamma_{i,k}}) \\ & \cdot e(d_{i,2}, \prod d_{k,1}^{\gamma_{i,k}}) & \cdot e(d_{i,3}, \prod d_{k,1}^{\gamma_{i,k}}) \end{pmatrix} \\ = \prod_{i=1}^{n} e(d_{i,2}, \prod d_{k,1}^{\gamma_{i,k}}) & \prod_{i=1}^{n} e(d_{i,2}, \prod d_{k,2}^{\gamma_{i,k}})^{2} & \prod_{i=1}^{n} e(\mathcal{A}_{i}, d_{i,2}) e(d_{i,2}, \prod d_{k,3}^{\gamma_{i,k}}) \\ & \cdot e(d_{i,1}, \prod d_{k,2}^{\gamma_{i,k}}) & \cdot e(d_{i,3}, \prod d_{k,2}^{\gamma_{i,k}}) \end{pmatrix} \\ = \prod_{i=1}^{n} e(\mathcal{A}_{i}, d_{i,1}) & \prod_{i=1}^{n} e(\mathcal{A}_{i}, d_{i,2}) & \prod_{i=1}^{n} e(\mathcal{A}_{i}, d_{i,3})^{2} \\ & \cdot e(d_{i,3}, \prod d_{k,3}^{\gamma_{i,k}}) & \cdot e(d_{i,3}, \prod d_{k,2}^{\gamma_{i,k}}) & \cdot e(d_{i,3}, \prod d_{k,3}^{\gamma_{i,k}}) \end{pmatrix}$$

$$\begin{split} \prod_{i=1}^{n} e \Big(d_{i,1}, \ \mathcal{A}_{i}^{r_{1}, 3+r_{3,1}} \prod d_{k,1}^{\gamma_{i,k}}^{2\cdot r_{1,1}} d_{k,2}^{\gamma_{i,k}(r_{1,2}+r_{2,1})} d_{k,3}^{\gamma_{i,k}(r_{1,3}+r_{3,1})} \Big) \cdot \\ e \Big(d_{i,2}, \ \mathcal{A}_{i}^{r_{2,3}+r_{3,2}} \prod d_{k,1}^{\gamma_{i,k}(r_{1,2}+r_{2,1})} d_{k,2}^{\gamma_{i,k}^{2\cdot r_{2,2}}} d_{k,3}^{\gamma_{i,k}(r_{2,3}+r_{3,2})} \Big) \cdot \\ e \Big(d_{i,3}, \ \mathcal{A}_{i}^{2\cdot r_{3,3}} \prod d_{k,1}^{\gamma_{i,k}(r_{1,3}+r_{3,1})} d_{k,2}^{\gamma_{i,k}(r_{2,3}+r_{3,2})} d_{k,3}^{\gamma_{i,k}^{2\cdot r_{3,3}}} \Big) \end{split}$$

Pairing-product

Multi-scalar 9n + 12m + 27 3n + 3m + 6Quadratic 18n + 24 3n + 6

12n + 27

3n + 6

- Introduction
- 2 Groth Sahai Proof System
- Batching Technique
- 4 Applications
 - Groth Group Signature
 - BCKL P-Signature

$$ullet$$
 pk $=(f,h,T)\in\mathbb{G}^2 imes\mathbb{G}_T$ (msk: $z\in\mathbb{G}$ such that $e(f,z)=T$)

- ullet pk $=(f,h,T)\in\mathbb{G}^2 imes\mathbb{G}_T$ (msk: $z\in\mathbb{G}$ such that e(f,z)=T)
- $C_i = (a, b)$ satisfying e(a, vh) e(f, b) = T, where $pk_i = v = g^{x_i} \in \mathbb{G}$, $sk_i = x_i$

- ullet pk $=(f,h,T)\in\mathbb{G}^2 imes\mathbb{G}_T$ (msk: $z\in\mathbb{G}$ such that e(f,z)=T)
- $C_i = (a, b)$ satisfying e(a, vh) e(f, b) = T, where $pk_i = v = g^{x_i} \in \mathbb{G}$, $sk_i = x_i$
- To sign $m \in \mathbb{Z}_p$, computes $\sigma = g^{1/(x_i+m)}$; and forms GS commitments \mathbf{d}_v , \mathbf{d}_b and \mathbf{d}_σ ,

- $\mathsf{pk} = (f, h, T) \in \mathbb{G}^2 \times \mathbb{G}_T \; (\mathsf{msk} : z \in \mathbb{G} \; \mathsf{such \; that} \; e(f, z) = T)$
- $C_i = (a, b)$ satisfying e(a, vh) e(f, b) = T, where $pk_i = v = g^{x_i} \in \mathbb{G}$, $sk_i = x_i$
- To sign $m \in \mathbb{Z}_p$, computes $\sigma = g^{1/(x_i + m)}$; and forms GS commitments \mathbf{d}_v , \mathbf{d}_b and \mathbf{d}_σ ,
- Make a proof that the associated plaintexts satisfy the following:

$$e(a, vh) e(f, b) = T$$
 and $e(\sigma, g^m v) = e(g, g)$

Batched result

	Naive Approach	With Batch	
Independant Equation			
e(a, vh) e(f, b) = T	13		
$e(\sigma, g^m v) = e(g, g)$	20 + 35		
Combined			
Both	68	11	
Several	68 <i>n</i>	4n + 7	

•
$$f,g \in \mathbb{G}_1, h \in \mathbb{G}_2$$

- $f,g \in \mathbb{G}_1, h \in \mathbb{G}_2$
- $\mathsf{pk}_i = \mathsf{v}, \mathsf{w} \in \mathbb{G}_2$

- $f,g \in \mathbb{G}_1, h \in \mathbb{G}_2$
- $\mathsf{pk}_i = \mathsf{v}, \mathsf{w} \in \mathbb{G}_2$
- To sign $m \in \mathbb{Z}_p$, computes $\sigma = (C_1, C_2, C_3) \in \mathbb{G}_1 \times \mathbb{G}_2 \times \mathbb{G}_1$, such that $e(C_1, vh^m C_2) = e(g, h)$ and $e(f, C_2) = e(C_3, w)$

- $f,g \in \mathbb{G}_1, h \in \mathbb{G}_2$
- $\mathsf{pk}_i = \mathsf{v}, \mathsf{w} \in \mathbb{G}_2$
- To sign $m \in \mathbb{Z}_p$, computes $\sigma = (C_1, C_2, C_3) \in \mathbb{G}_1 \times \mathbb{G}_2 \times \mathbb{G}_1$, such that $e(C_1, vh^m C_2) = e(g, h)$ and $e(f, C_2) = e(C_3, w)$
- With the GS commitments c_1, c_2 and c_3 for $C_1, M_1 = f^m, C_3$ in \mathbb{G}_1 and d_1, d_2 for $M_2 = h^m$ and C_2 in \mathbb{G}_2 .

- $f,g \in \mathbb{G}_1, h \in \mathbb{G}_2$
- $\mathsf{pk}_i = \mathsf{v}, \mathsf{w} \in \mathbb{G}_2$
- To sign $m \in \mathbb{Z}_p$, computes $\sigma = (C_1, C_2, C_3) \in \mathbb{G}_1 \times \mathbb{G}_2 \times \mathbb{G}_1$, such that $e(C_1, vh^m C_2) = e(g, h)$ and $e(f, C_2) = e(C_3, w)$
- With the GS commitments c_1, c_2 and c_3 for $C_1, M_1 = f^m, C_3$ in \mathbb{G}_1 and d_1, d_2 for $M_2 = h^m$ and C_2 in \mathbb{G}_2 .
- Make a proof that they satisfy the following:

$$e(C_1, vM_2C_2) = e(g, h), \quad e(f, C_2) = e(C_3, w)$$

and $e(f, M_2) = e(M_1, h)$

Batched result

	Naive Approach	With Batch	
SXDH			
One signature	68	15	
Several	68 <i>n</i>	2n + 13	
DLIN			
One Signature	126	12	
Several	126 <i>n</i>	3n + 9	

Thank you

Any Questions?